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ABSTRACT 

 

Agricultural research incorporates data which are in the form of discrete counts or proportions based on counts. This 

kind of data are usually non-normally distributed that can cause issues with parameter estimation and prediction if 

the usual general linear model framework is applied as they do not satisfy the assumptions of linear models. Here 

we studied the performance of generalized linear model within Bayesian framework with some asymptotic analytic 

tools and simulation techniques to the analysis of proportion data with different link functions. The results obtained 

through the exact as well as asymptotic inference have been compared through open source software such as R and 

JAGS. 

Keywords: Bayesian inference, independence Metropolis, JAGS, Metropolis within Gibbs, R, sampling importance 

resampling.   

 

I. INTRODUCTION 

 

In many areas of application of agricultural research, 

one encounters observations made on individual 

experimental units that take one of two possible forms. 

For example, a seed may germinate or fail to germinate 

under certain experimental conditions; an insect in an 

insecticidal trial may survive or die when exposed to a 

particular dose of the insecticide. Such data are said to 

be binary, although an older term is quantal, and the two 

possible forms for each observation are often described 

generically by the terms success and failure. In some 

circumstances, interest centers not just on the response 

of one particular experimental unit (seed or insect) but 

on a group of units that have all been treated in a similar 

manner. Thus a batch of seeds may be exposed to 

conditions determined by the relative humidity and 

temperature, for example, and the proportion of seeds 

germinating in each batch recorded. The resulting data 

are then referred to as grouped binary data, and 

represent the number of successes out of the total 

number of units exposed to a particular set of 

experimental conditions. Data in the form of proportions 

are often modeled using the binomial distribution; hence 

do not satisfy the assumptions of linear models, being 

both discrete and non-normal. To deal this type of data, 

two approaches are possible (i) to find some 

transformation of the data or (ii) to use an alternative 

form of analysis that takes account of the distributional 

form of the data. The development of the generalized 

linear models (Nelder and Wedderburn, 1972) provided 

a solution to the latter approach. The aim of this paper is 

to review the binomial proportion data under the 

framework of Bayesian generalized linear model. A 

comparison has been made among the different link 

functions for the binomial regression model.   

 
Bayesian inference is based on Bayes’ rule which 

provides a rational method for updating our beliefs in 

the light of new information. The Bayes’ rule states that 

posterior distribution is the combination of prior and 

data information. It does not tell us what our beliefs 

should be; it tells us how they should change after 

seeing new information. The prior distribution is 

important in Bayesian inference since it influences the 

posterior. When no information is available, we need to 

specify a prior which will not influence the posterior 

distribution. Such priors are called weakly-informative 
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or non-informative or vague priors. This type of priors 

will be used throughout the paper. The posterior 

distribution contains all the information needed for 

Bayesian inference and the objective is to calculate the 

numeric summaries of it via integration. In cases, where 

the conjugate family is considered, posterior distribution 

is available in a closed form and so the required 

integrals are straightforward to evaluate. However, the 

posterior is usually of non-standard form and evaluation 

of integrals is difficult. For evaluating such integrals 

various methods are available such as Laplace’s method 

(see, for example, Carlin and Louis 2009, Erkanli 1994, 

Tierney and Kadane 1986, Tierney, Kass, and Kadane 

1989) and numerical integration methods (Davis and 

Rabinowitz 1975, Evans and Swartz 1996). Simulation 

can also be used as an alternative technique. Simulation 

based on Markov chain Monte Carlo (MCMC) is used 

when it is not possible to sample   directly from 

posterior       . For a wide class of problems, this is 

the easiest method to get reliable results (Gelman et al, 

2014). Gibbs sampling and Metropolis-Hastings 

algorithm are the two MCMC techniques which render 

difficult computational tasks quite feasible. A variant of 

MCMC techniques are performed such as independence 

Metropolis and Metropolis within Gibbs sampling. To 

make computation easier, software such as R and JAGS 

(Just Another Gibbs Sampler) are used. 

 

II. BINARY AND BINOMIAL REGRESSION 

 
Binary and binomial regression are frequently 

encountered in modern science, especially in the field of 

agricultural research for the analysis of proportions that 

have been calculated from discrete counts, for instance, 

number of plants out of 20 affected by a disease. 

Suppose that                    with    known. 

Choosing the logit transformation of the probability of 

success,                      , as the link function 

leads to the logistic regression model. The likelihood for 

the data   is  
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where        is the linear predictor for the     case. 

Alternatives to logit link are the probit       , and 

complementary log-log,                 . The data 

distribution for the probit and complementary log-log 

model is  
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respectively. In practice, the probit and logit models are 

similar, symmetric about      , differing mainly in 

the extremes of the tails, and the relationship      

        holds for both. By contrast, the 

complementary log-log link allows asymmetry by 

specifying                     .  

 

III. BAYESIAN LOGISTIC REGRESSION MODEL 

WITH DEMETHYLATION EXPERIMENT 

 
To implement the regression model within Bayesian 

framework, let us consider a data set taken from 

Welham et al. (2015) also discussed in Amoah et al. 

(2008). In this experiment, a demethylation agent is 

applied to plants: the agent has the effect of converting 

methylated nucleotides to non-methylated form, causing 

epigenetic changes that lead to abnormal phenotypes 

such as stunting and deformation. The study aimed to 

investigate the relationship between dose and the 

resulting proportion of plants with a normal phenotype. 

Seed is treated with the demethylation agent at six doses 

(0, 0.01, 0.1, 0.5, 1.0, 1.5), including a zero control dose. 

Plants are grown in trays, each tray sown with seeds 

treated with the same dose of agent and each dose is 

replicated in four trays: two with 60 plants, and two 

with 100 plants. The trays are arranged as a completely 

randomized design. The header part of the data, which 

contains explanatory variate Dose, response variate 

Normal and variate Total containing the number of 

plants for each tray, each identified using dummy index 

variate DTray, is    

 

   DTray  Dose   Total  Normal 

     1     0.00     60    59 
     2     0.00     60    58 
     3     0.00    100    99 
     4     0.00    100    98 
     5     0.01     60    58 
     6     0.01     60    59 

 

For the demethylation experiment, a Binomial GLM 

with logit link for the normal plants in the     tray (  ) 

in terms of the dose applied to that tray (  ) can be 

written as  



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  259 

 
                               

 

                     

 
where    is the probability that           gives a 

normal phenotype, and    is its logit transformation. 

The likelihood for the independent binomial 

observations is  
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A weakly informative logistic prior with scale 103 is 

assumed for the regression coefficients  

 
                         

Thus, by Bayes’ rule the joint posterior density can be 

obtained as  
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The marginal posterior densities for    and    are  

 

          ∫                

          ∫                 

 

These integrals, like many encountered in Bayesian 

inference, are almost always analytically intractable. So 

inference for a single parameter in a multi parameter 

setting involves two potentially difficult calculations: 

first, of the joint posterior, second, of the marginal 

posterior from the joint. Fortunately, these two tasks are 

easily accomplished by some asymptotic tool such as 

Laplace approximation or the simulation techniques like 

Markov chain Monte Carlo (MCMC). We implement 

the analytic tool to approximate the posterior density 

and use the results as starting values in the MCMC 

algorithm. A variant of MCMC algorithm known as 

Independence Metropolis is implemented to 

approximate the joint posterior density, through the 

package LaplacesDemon in R and Metropolis within 

Gibbs sampling through R2jags.  

 
A. Analysis with LaplacesDemon 

 

For the computation of marginal posterior densities of 

each  s the Laplace approximation technique is used to 

approximate the integral. Parallel simulation tools are 

also implemented to draw the samples from marginal 

posterior densities to approximate the results with SIR 

method and one of the MCMC algorithms. Simulation 

via MCMC algorithm is done through independent 

Metropolis. These required techniques are implemented 

in LaplacesDemon package. For this purpose, 

functions LaplaceApproximation and 

LaplacesDemon are used and for doing this first data 

must be created in R.  

1) Creation of demethylation data 

 

In the demethylation data set, the vector   contains the 

individual values for normal phenotype and Dose is an 

explanatory variate, both can be extracted from the data 

object demethy which is read through the function 

read.table in R in which path is a path where data 

is stored. The model matrix   has two columns which 

are denoted by J, the vector of 1’s has been inserted for 

intercept and second column is for Dose. The number 

of plants for each tray is entered with N.  

 
demethy<- read.table 

("path/DEMETHYLATION.DAT",  

 header=TRUE) 
y<-demethy$Normal 
Dose<-demethy$Dose 
X<-cbind(1,Dose) 
N<-demethy$Total 
J <- 2  
mon.names <- "LP" 
parm.names<-as.parm.names( 

list(beta=rep(0,J))) 
MyData <- list( J=J, N=N,  

mon.names=mon.names, parm.names= parm

.names, X=X, y=y) 

 

The two parameters beta[1] and beta[2] are organized in 

the vector parm.names with the function 

as.parm.names. The function mon.names is used 

to monitor the log posterior (LP). MyData is a listed 

object having all the defined objects within it.  

2) Model specification 

The logarithm of the unnormalized joint posterior 

distribution is defined in order to make the computation 

numerically more stable  



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  260 

                 ∑ 

  

   

  (
   

     
)

  

    (
 

     
)
     

    

 
     

   
                  

 
  

 
           

 

 

The R codes for the above equation are 

 

Model <- function(parm, Data){ 
### Parameters 
beta <- parm[1:Data$J] 
### Log-Prior 
beta.prior <sum(dlogis(beta,0,  

1000, log=TRUE)) 
### Log-Likelihood 
mu<- tcrossprod(Data$X,t(beta)) 
p <- invlogit(mu) 
LL<-um(dbinom(Data$y,Data$N,p,  

log=TRUE)) 
### Log-Posterior 
LP <- LL + beta.prior 
Modelout <- list(LP=LP, Dev=-

2*LL, Monitor=LP, 
yhat=rbinom(length(p), Data$N, p), pa

rm=parm) 
return(Modelout)} 

 
A numerical approximation algorithm iteratively 

maximizes the logarithm of the unnormalized joint 

posterior density as specified in this Model function. 

During each iteration in which a numerical 

approximation algorithm is maximizing the logarithm of 

the unnormalized joint posterior density, two arguments 

are passed to Model: parm and Data, where parm is 

short for the set of parameters, and Data is a list of data. 

The Model function is evaluated and returned 

Modelout in a form of list which contains log 

posterior (LP) along with the deviance (Dev), a vector 

(Monitor) of any variables desired to be monitored in 

addition to the parameters,      (yhat) or replicates of 

y, and the parameter vector parm.  

 

3) Asymptotic Approximation 

 
In order to approximate the joint posterior density, 

Laplace’s method is used with the function 

LaplaceApproximation. For the purpose of 

optimization, several algorithms have been implemented 

in this function. Among all the algorithms, we have 

found that the BFGS, LBFGS, NM, and TR perform 

well in most of the cases. However, for this particular 

case Trust region (TR) algorithm of Nocedal and 

Wright (1999) is safe due its efficiency of convergence 

in the fewest number of iterations. To start the 

optimization, some initial values for the parameters 

must be defined and in this way zero is set to the 

regression coefficients.  

 
Initial.Values <- rep(0,J) 
Fit<LaplaceApproximation(Model= 

Model, parm=Initial.Values, 
Data=MyData, Method="TR",  

Iterations=500, sir=TRUE) 

 

Table 1. Marginal posterior densities summaries of the 

parameters using the function LaplaceApproximation. 

 

Table 2. Summaries of the posterior samples drawn with 

sampling importance resampling (SIR)  

 
 
From the summary output of analytic Laplace 

approximation method via 
LaplaceApproximation function reported in 

Table 1, it may be noted that the posterior mode of 

parameter    is −2.79 ± 0.13 with 95% credible interval 

(2.53,3.05), which is statistically significant, whereas 

the posterior mode of     is −7.62±0.35 with 95% 

credible interval (−8.32, -6.92), which is also 

statistically significant. The simulated results due to 

sampling importance resampling algorithm using the 

same function reported in Table 2 says that the posterior 

mode of    is 2.82 ± 0.13 with 95% credible interval 

(2.57, 3.09), whereas the posterior mode of    is −7.69 

± 0.35 with 95% credible interval (−8.35, -7.06). 

 

4) Posterior simulation with independence 

Metropolis 

 

MCMC simulation of logistic regression is done 

through the function LaplacesDemon which 

implements the independent Metropolis algorithm. 

Before fitting the model with LaplacesDemon it is 

necessary to specify initial values for each of the 

parameters. Each initial value is a starting point for the 

estimation of a parameter. If all initial values are set to 
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zero for MCMC, the LaplacesDemon function 

optimizes initial values using a spectral projected 

gradient algorithm in the LaplaceApproximation 

function. Hence, it is better to use the last fitted object 

Fit with the function as.initial.values to get a 

vector of initial values from 

LaplaceApproximation for fitting with 

LaplacesDemon. Thus, to get a vector of initial 

values and model fitting, the R command is  

 
Initial.Values<-as.initial.values(Fit) 

FitDemon.TR<- LaplacesDemon( 

Model=Model,Data=MyData,  

Initial.Values,Covar=Fit1$Covar,Itera

tions=15000,Status=100,  

Thinning=10, Algorithm="IM",  

Specs=list(mu=Fit1$Summary1[1: 

length(Initial.Values),1])) 

 

Table  3. Marginal posterior summaries based on the MCMC 

samples using independence-Metropolis algorithm 

 
 
The reduced posterior standard deviations for the 

parameters based on MCMC (IM) samples as reported 

in Table 3, depict a better posterior approximation. 

 

B. Analysis with JAGS 

 
In order to interact with JAGS, the interface R2jags is 

used for the Bayesian analysis of the logistic regression 

for the same demethylation data, which basically throws 

R data structures at JAGS and sucks the results back 

into R, as suitable objects for further processing. This 

enables us to maintain a completely reproducible record 

of the initial data-manipulation (in R), estimation (in 

JAGS) and reporting of results (in R).  

1) Creation of data in R 

The creation of data is same as defined for 

LaplacesDemon package. Here, n is the total number 

of observations of the data demethy. The object 

j.dat is the data which is provided in the form of a 

named list, one element per data-structure (usually 

vector or matrix).  

 
y<-demethy$Normal 
Dose<-demethy$Dose 
X<-cbind(1,Dose) 
N<-demethy$Total 

n<-nrow(demethy) 
j.dat<-list(y=y, X=X, n=n,N=N) 

 

 

 

2) Model specification 

 

The full Bayesian structure of the binomial GLM with 

logit link is defined as  

                   
 

                     

 
where    is the probability that           gives a 

normal phenotype, and    is its logit transformation. The 

regression coefficients are logistically distributed with 

zero mean and 0.001 precision. 

                                 
 
The program specifying the above model must be put in 

a separate file which is then read by JAGS. When 

working in R this is most conveniently done using the 

R-function cat() which behaves pretty much like 

paste() with the exception that the result is not a 

character object but directly written to a specified file. 

Here is the BUGS code specifying the above model, 

using cat to put it in the file "demeth.txt": 

 
cat("model{ 
 for(i in 1:n){ 
  y[i] ~ dbin(p[i],N[i]) 
  logit(p[i])<-inprod(X[i,],beta[]) 
 } 

 for(j in 1:2){ 
  beta[j]~dlogis(0,0.001)} 
}",file="demeth.txt") 

 

3) Initial values and parameters 

 

To start MCMC simulation, some starting values must 

be supplied. In order to be able to monitor convergence 

atleast three chains must be supplied as a starting values 

for each chain. j.ini is used for this purpose. 

params is defined for the monitored parameters. 

 
j.ini<-function(){list(beta= 

 rnorm(2))} 
params<-c("beta") 

4) Calling JAGS from R 
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With these specifications we can now use JAGS to first 

compile and initialize the model and then run the model 

for some 20000 iterations.  

 
jagsfit<- jags(jdat,j.ini, 

params,model.file="demeth.txt", 
n.iter=20000,progress.bar=NULL) 

 
The summary of the posterior estimates of the 

parameters can be obtained with the function print.  

 

Table  4. Summary of the marginal posterior 

distribution of the parameters obtained by Metropolis 

within Gibbs algorithm implemented in JAGS. 

 

 

From this JAGS output, it is noticed that the values of 

the posterior mean of both beta parameters are very 

close to the values obtained from sampling importance 

resampling (SIR). 

 

IV. BAYESIAN BINOMIAL REGRESSION WITH 

PROBIT LINK 

 

Logit models are the most popular stochastic 

formulations for binary responses and are cited as 

logistic regression models. Another popular link is the 

probit link (Bliss, 1935), which gives results similar to 

those for the logit link. For the Bayesian 

implementation of binomial regression with probit link, 

same demethylation data is discussed here. A binomial 

GLM with probit link for the normal plants in the     

tray (  ) in terms of the dose applied to that tray is 

defined as  

 

                              

 

                   

 

where   is the cumulative probability function of the 

standardized normal distribution and     is its 

corresponding inverse function. The likelihood for the 

independent binomial observation is  
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A weakly informative logistic prior is assumed for the 

regression coefficients  

 

                         

 

According to the Baye’s rule, the joint posterior density 

is  
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In Bayesian inference the target is to obtain the 

marginal posterior densities. Under the proportionality, 

the marginal posterior density for    can be obtained by 

integrating out the joint posterior density over   . 

Similarly, for the marginal posterior density for    can 

be obtained by integrating out the joint posterior density 

over   . Since, these marginal posterior densities for 

parameters do not have a closed form expression, so that 

their posterior summaries cannot be evaluated 

analytically. The most convenient approach seems to be 

the numerical integration technique and the Markov 

chain Monte Carlo (MCMC) methods.  

 

A. Analysis with LaplacesDemon 

 

To avoid computational overflows and underflows, the 

logarithms of the posterior densities are performed. 
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The R codes for the above model would be same as in 

logistic regression except for the link function. Here, we 

use probit link instead of logit link. The code for the 

probit link is  

 

p <- pnorm(mu) 

 

After executing all the codes with probit link, the Model 

function is evaluated and returned Modelout in a form 

of list containing log posterior (LP) along with the 
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deviance (Dev), a vector (Monitor) of any variables 

desired to be monitored in addition to the parameters, 

     (yhat) or replicates of y, and the parameter vector 

parm.  

1) Asymptotic approximation 

The function LaplaceApproximation is used to 

approximate the joint posterior density with the 

algorithm Trust region. Some initial values for the 

parameters are assigned to start the optimization. In the 

LaplacesDemon package the order of the elements of 

the vector of initial values must match the order of the 

parameters associated with each element of parm passed 

to the Model function.  

 

Initial.Values <- rep(0 ,J) 

Fit <- LaplaceApproximation  

(Model=Model, parm=Initial.Values,Dat

a=MyData, Method="TR",  

Iterations=1000, sir=TRUE) 

 

Table  5. Asymptotic posterior summaries of the 

parameters with probit link based on Laplace 

approximation. 

 
 

Table  6. Summaries of the posterior samples drawn 

with sampling importance resampling (SIR) when 

sir=TRUE, given the point-estimated posterior modes 

and the covariance matrix with the bounds that 

constitute a 95% probability interval. 

 
 

2) Posterior simulation with independence 

Metropolis 

 

The function LaplacesDemon is used for the MCMC 

simuation with the independent Metropolis algorithm in 

order to get the posterior estimates of the parameters.  

 

Initial.Values<-as.initial.values(Fit) 

FitDemon<- LaplacesDemon( 

Model=Model, Data=MyData, Initial.Val

ues, Covar=Fit$Covar, Iterations=5000

, Status=1000, Algorithm="IM",  

Specs=list(mu=Fit$Summary1[1:length(I

nitial.Values),1])) 

 

Table  7. Marginal posterior summaries based on the 

MCMC samples using independence-Metropolis 

algorithm 

 
 

B. Analysis with JAGS 

 

The interface of JAGS with R, i.e.; R2jags, is used for 

the Bayesian analysis of demethylation experiment with 

probit link. The creation of data is same as for the 

logistic regression. The full Bayesian model for 

demethylation data with probit link is defined as  

 

                   

 

                   

 

The regression coefficients are logistically distributed 

with mean zero and scale     (or precision     ).  

                             

 

The BUGS codes specifying the above model, using cat 

to put it in the file demeth.txt are 

 

cat("model{ 

 for(i in 1:n){ 

  y[i]~dbin(p[i],N[i]) 

  p[i]<-phi(inprod(X[i,],beta[])) 

for(j in 1:2){ 

 beta[j]~dlogis(0,0.001)} 

}",file="demeth.txt") 

 

We use the same initial values and parameters which 

already defined for logistic regression in JAGS. With 

these specifications we can now use JAGS to first 

compile and initialize the model and then run the model 

for some 2000 iterations. 

 

jagsfit<-jags(jdat, j.ini,  

params, model.file="demeth.txt", n.it

er=2000, progress.bar= 
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NULL) 

 

Table  8. Summary of the marginal posterior 

distribution of the parameters obtained by Metropolis 

within Gibbs algorithm implemented in JAGS. 

 

 

V. BAYESIAN BINOMIAL REGRESSION WITH 

COMPLEMENTARY LOG-LOG LINK 
 

A transformation of the binary response probability that 

is not as widely used as the logistic or probit 

transformations is the complementary log-log 

transformation (Fisher, 1922), a less popular link, but it 

models more efficiently the tails of the distribution, 

especially when asymmetry between low and high 

probability values is observed. Collett (2002) explains 

the complementary log log model in the context of a 

bioassay which can be derived by supposing that the 

tolerances of individuals have an extreme value 

distribution known as the Gumbel distribution. For the 

Bayesian implementation of Binomial regression with 

complementary log-log link, demethylation data is 

revisited. A Binomial GLM with complementary log-

log link for the number of normal plants in the     tray 

     in terms of the dose applied to that tray is defined 

as  

                               

 

                           

 

where    is the probability that           gives a 

normal phenotype, and    is its complementary log-log 

transformation. The likelihood for the independent 

binomial observations is 
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The regression coefficients are assigned to a weakly 

informative logistic prior with scale     

 

                         

 

According to the Baye’s rule, the joint posterior density 

is  

 

           ∏(
  

  
)

 

   

      [    ]    

    [    ]      
           

 

              
 
  

 

 

The marginal densities for    and   are not in closed 

form, so that some asymptotic or simulation techniques 

are required. In order to this, tools such as Laplace 

approximation, independence Metropolis, and 

Metropolis within Gibbs are used. 

 

A. Analysis with LaplacesDemon 

 

For the computation of marginal posterior densities of 

each  s the Laplace approximation technique is used to 

approximate the integral through the function 

LaplaceApproximation. Simulation via MCMC 

algorithm is done through independent Metropolis 

through the function LaplacesDemon. To make the 

computation comparatively easier, the logarithm of the 

unnormalized joint posterior density is used 

           ∑ 

  

   

        [    ]    
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The first step is to create data in R and the creation of 

demethylation data is same for all link functions. All the 

R codes for the above model would be same as in 

logistic regression except for the link function. Here, we 

use complementary log-log link instead of logit or 

probit link. The code for the complementary log-log 

link is  

Model <- function(parm, Data){ 

### Parameters 

beta <- parm[1:Data$J] 

### Log-Prior 

beta.prior<-sum(dlogis(beta,  

0, 1000, log=TRUE)) 

### Log-Likelihood 

mu<-tcrossprod(Data$X, t(beta)) 

p <- invcloglog(mu) 

LL<-sum(dbinom(Data$y, Data$N,  
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p, log=TRUE)) 

### Log-Posterior 

LP <- LL + beta.prior 

Modelout <- list(LP=LP, Dev=-

2*LL, Monitor=LP, 

yhat=rbinom(length(p), Data$N, p), pa

rm=parm) 

return(Modelout)} 

 

Here,   is the inner product of the parameters and 

regressor and the function invcloglog is the inverse 

of the complementary log-log which returns the 

probability p in the interval [0, 1].  

 

1) Asymptotic approximation 

To approximate the joint posterior density, the function 

LaplaceApproximation with the algorithm Trust 

region is used. To start the optimization, some initial 

values are given to the parameters through the object 

Initial.Values.  

 

Initial.Values <- rep(0,J) 

Fit <- LaplaceApproximation(  

Model=Model, Initial.Values, 

Data=MyData, Method="TR", Iterations=

1000, sir=TRUE) 

 

Table  9. Asymptotic posterior summaries of the 

parameters with complementary log-log link. 

 
 

 

 

 

Table  10. Summaries of the posterior samples drawn 

with sampling importance resampling (SIR). 

 
 

2) Posterior simulation with independence 

Metropolis 

 

MCMC simulation is done with the independence 

Metropolis algorithm implemented in the function 

LaplacesDemon. To fit the function 

LaplacesDemon, a vector of initial values from 

LaplaceApproximation is used.  

 

Initial.Values<-as.initial.values(Fit) 

FitDemon<-LaplacesDemon(Model= 

Model, Data=MyData, Initial.Values,Co

var=Fit$Covar, Iterations=7000, Statu

s=100, Algorithm= 

"IM",Specs=list(mu=Fit$Summary1[1:len

gth(Initial.Values),1])) 

 

Table  11. Marginal posterior summaries based on the 

MCMC samples using independent Metropolis 

algorithm. 

 
 

B. Analysis with JAGS 

 

The package R2jags is used to conduct the same 

Bayesian analysis of demethylation data with the 

complementary log-log link. The simulation technique 

is performed with Metropolis within Gibbs algorithm 

which is implemented in JAGS. The data creation, 

initial values, and monitored parameters are same, only 

the difference is in the model specification. The full 

Bayesian Binomial regression model with 

complementary log-log link is  

 
                              

 

                            

 

The regression coefficients are assigned to a weakly 

informative logistic prior with scale    .  

 

                             

Here is the BUGS code specifying the above model, 

using cat to put it in the file "demeth.txt":  

 

cat("model{ 

 for(i in 1:n){ 

  y[i]~dbin(p[i],N[i]) 

  cloglog(p[i])<-inprod(X[i,],beta[]) 

for(j in 1:2){ 

 beta[j]~dlogis(0,0.001)} 
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}",file="demeth.txt") 

 

By specifying the initial values and parameters to be 

monitored, we can use the function jags to first 

compile and initialize the model and then run the model 

for some 1000 iterations.  

 

jagsfit<- jags(jdat, j.ini,  

params, model.file="demeth.txt", n.it

er=1000, progress.bar= 

NULL) 

 

Table 12. Summary of the marginal posterior 

distribution of the parameters obtained by Metropolis 

within Gibbs algorithm implemented in JAGS. 

 

 
Figure 1. Coefficient estimates for Binomial regression 

model with all the three link functions. The plot 

contains the quantiles of the posterior draws. The line 

corresponds to 95% credible intervals. It is evident that 

the independent Metropolis (IM) provides shortest 

interval as compared to sampling importance 

resampling (SIR) and Metropolis within Gibbs (MWG) 

sampling. Both Intercept and Dose are significant as 

they do not contain zero in their credible regions. 

 

VI. MODEL COMPARISON AMONG LINK 

FUNCTIONS 

 
In Bayesian paradigm, the most common method of 

assessing the goodness of fit criterion of an estimated 

statistical model are deviance and deviance information 

criterion (DIC, Spiegelhalter et al. 2002). Deviance is 

defined differently in Bayesian inference than 

frequentist inference. In frequentist inference, deviance 

is -2 times the log-likelihood ratio of a reduced model 

compared to a full model, whereas in Bayesian 

inference, deviance is simply -2 times the log-likelihood. 

In Bayesian inference, the lowest expected deviance has 

the highest posterior probability (Gelman et al. 2014). 

 

                  
 

The DIC is more flexible than deviance since it 

accounts the model complexity and is the sum of both 

the mean model-level deviance and the model 

complexity (pD or pV).  

 

         

 

where            . A smaller DIC and deviance 

indicates a better fit to the data set. Table 13 provides 

the deviance and DIC for the three link functions with 

independent Metropolis implemented in 

LaplacesDemon function and Metropolis within 

Gibbs sampling implemented in R2jags. The deviance 

as well as the value of DIC is less for complementary 

log-log model than logit and probit model which shows 

that the complementary log-log model fits data well. 

Figure 2 is the graphical representation of deviances for 

all the three MCMC tools with the three link functions. 

 

Table 13. Model comparison among logit, probit and 

complementary log-log model for demethylation data. 

Both deviance and DIC criterion support Binomial 

regression model with complementary log-log is a better 

choice as compared to other two link functions. 

 

Figure 2. Graphical representation of model 

comparison among logit, probit and complementary log-

log model for demethylation data. The complementary 

log-log fits data better than other two link functions. 
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Figure 3 plots the discrepancies between the model and 

the data which is based on posterior predictive density. 

A posterior predictive check is a method to assess 

discrepancies between the model and the data (Gelman, 

Meng, and Stern 1996). The basic technique for 

checking the fit of a model to data is to draw simulated 

values from the joint posterior predictive distribution of 

replicated data (      or     ) and compare these 

samples to the observed data (  ). Any systematic 

differences between the simulations and the data 

indicate potential failings of the model (Gelman et al., 

2014). 

 
(a) Logit model 

 
(b) Probit model 

 
(c) Complementary log-log model 

 

Figure 3. Posterior predictive fit plots for Bayesian 

binomial regression with demethylation data under logit, 

probit, and complementary log-log transformations. The 

probit model plot shows a worst fit between the 

dependent variable and its expectation. However, the 

complementary log-log model fits data well. 

 

VII. CONCLUSION  
 

Analysis of Binomial regression with different link 

functions under the framework of Bayesian inference 

have been studied. For the Bayesian implementation, 

asymptotic technique such as Laplace approximation 

and simulation with sampling importance resampling, 

independent Metropolis and Metropolis within Gibbs 

sampling have been performed. The choice of the link 

function is quite important for the demethylation 

experiment. We compared the models using deviance 

information criterion (DIC) and obtained that 

complementary log-log model has lowest DIC and it fits 

data well. After seeing the results from all the 

mentioned MCMC techniques, it is evident that the 

independent Metropolis implemented in 

LaplacesDemon function for the complementary log-

log model provides the shortest credible regions for the 

regression coefficients. Moreover, it is also noticed that 

the independence Metropolis gives shortest standard 

deviations as compared to sampling importance 

resampling (SIR) and Metropolis within Gibbs (MWG) 

sampling. However, the results obtained through SIR 

and MWG are quite close to each other.  
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